

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### Specific Membrane Transport of Mercury as $[\text{Hg}(\text{SCN})_4]^{2-}$ Ion Using K-Dibenzo-18-crown-6 as Carrier

Ali Jabbari<sup>a</sup>; Haraj Chaldavi<sup>a</sup>; Mojtaba Shamsipur<sup>a</sup>

<sup>a</sup> DEPARTMENT OF CHEMISTRY, RAZI UNIVERSITY, KERMANSHAH, IRAN

Online publication date: 16 August 1999

**To cite this Article** Jabbari, Ali , Chaldavi, Haraj and Shamsipur, Mojtaba(1999) 'Specific Membrane Transport of Mercury as  $[\text{Hg}(\text{SCN})_4]^{2-}$  Ion Using K-Dibenzo-18-crown-6 as Carrier', *Separation Science and Technology*, 34: 12, 2421 – 2430

**To link to this Article:** DOI: 10.1081/SS-100100782

URL: <http://dx.doi.org/10.1081/SS-100100782>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## Specific Membrane Transport of Mercury as $[\text{Hg}(\text{SCN})_4]^{2-}$ Ion Using $\text{K}^+$ -Dibenzo-18-crown-6 as Carrier

ALI JABBARI, HARAJ CHALDAVI, and MOJTABA SHAMSIPUR\*  
DEPARTMENT OF CHEMISTRY  
RAZI UNIVERSITY  
KERMANSHAH, IRAN

### ABSTRACT

Potassium-dibenzo-18-crown-6 complex cation was used as carrier for the uphill transport of mercury as  $[\text{Hg}(\text{SCN})_4]^{2-}$  complex anion through a chloroform membrane system. By using 0.2 mol/L EDTA as a metal ion acceptor in the receiving phase at the optimized pH of 10.0, the amount of mercury transport through the liquid membrane after 120 minutes was  $94.2 \pm 0.7\%$ . The selectivity and efficiency of mercury transport from aqueous solutions containing equimolar mixtures of  $\text{Co}^{2+}$ ,  $\text{Ni}^{2+}$ ,  $\text{Cu}^{2+}$ ,  $\text{Zn}^{2+}$ ,  $\text{Pb}^{2+}$ , and  $\text{Cd}^{2+}$  ions were investigated. In the presence of 0.05 mol/L EDTA at pH 3.2 as a proper masking agent in the source phase, the interfering effects of  $\text{Zn}^{2+}$ ,  $\text{Pb}^{2+}$ , and  $\text{Cu}^{2+}$  ions were eliminated.

*Key Words.* Liquid membrane; Mercury transport;  $\text{K}^+$ -Dibenzo-18-crown-6 carrier;  $\text{Hg}(\text{SCN})_4^{2-}$  anion; EDTA

### INTRODUCTION

During the past two decades, the assay of mercury compounds has been of special interest not only because of their widespread agricultural and industrial use in the world, but also because of their hazardous effects on human health (1, 2). Hence, the development of new methods for selective removal of  $\text{Hg}^{2+}$  ion for environmental remediation and in the treatment of severe and

\* To whom correspondence should be addressed.

chronic mercury poisoning has remained an important objective. A variety of separation methods, such as solvent extraction, adsorption, precipitation, etc., has been utilized to remove toxic heavy metal ions (e.g.,  $\text{Hg}^{2+}$ ,  $\text{Cd}^{2+}$ , and  $\text{Pb}^{2+}$ ) from the environment and from biological systems (3).

Recently liquid membrane systems have been extensively used for selective removal, concentration, and purification of metal ions, particularly alkali and alkaline earth cations (4–8). In recent years, several liquid membrane systems using a variety of cyclic and acyclic ion carriers for the selective transport of heavy metal ions have been reported (9–22). The main advantage of liquid membrane transport of metal ions over their classical solvent extraction is that the amounts of organic solvent and metal ion complexing agent are markedly reduced (8).

In recent years we have been involved in the development of new solvent extraction (23, 24), solid-phase extraction (25), liquid membrane transport (15–17, 20), and PVC membrane selective electrode systems (26, 27) for selective separation and determination of heavy metal ions, mainly based on macrocyclic crown ionophores. In this paper we describe a selective and efficient liquid membrane system containing potassium ion–dibenzo-18-crown-6 for the transport of the mercury ion as  $[\text{Hg}(\text{SCN})_4]^{2-}$  counterion.

## EXPERIMENTAL

### Reagents

Dibenzo-18-crown-6 (DB18C6) and other macrocyclic ligands used were purchased from Merck Chemical Co. and used as received. Reagent-grade chloroform (Merck) was used as the membrane organic solvent. All other chemicals used in this study were of the highest purity available from either Merck or Fluka Chemical Companies and used without further purification except for vacuum drying. Triply distilled water was used throughout.

### Apparatus

The atomic absorption spectrophotometer used for the measurement of metal ion concentrations was a Shimadzu AA-670 instrument. The determination of mercury in solution was done by cold vapor atomic absorption spectrometry (CVAAS) (25). pH measurements were made with a Metrohm 632 pH-meter using a combined glass electrode. A bulk-type liquid membrane cell (17, 28) was used.

### Procedure

All transport experiments were carried out at ambient temperature. A cylindrical glass cell (inside diameter 4.0 cm) holding a glass tube (inside diameter 2.0 cm), thus separating the two aqueous phases, was used (17, 28). The inner aqueous phase (source phase) contained mercury nitrate (5 mL,  $1.0 \times 10^{-3}$



mol/L). The outer aqueous phase (receiving phase) contained EDTA at pH 10 (10 mL, 0.2 mol/L). The chloroform solution (30 mL) containing  $8.0 \times 10^{-3}$  mol/L DB18C6 laid below these aqueous phases and bridged the two aqueous phases. The organic layer was slowly stirred by a Teflon-coated magnetic bar (3 cm  $\times$  5 mm diameter). Determination of metal concentration was carried out by AAS. Reproducibility was confirmed as  $\pm 3\%$  or better. A similar transport experiment was carried out in the absence of the carrier for reference. The detailed conditions are included as footnotes in the tables.

## RESULTS AND DISCUSSION

In preliminary experiments it was found that, due to the relatively high hydration energy of  $\text{Hg}^{2+}$  ion (29) and its weak interaction with DB18C6 (30), DB18C6-mediated mercury transport in a liquid membrane system is very low (i.e., about 5% after 3 hours). However, in the presence of excess potassium thiocyanate,  $\text{Hg}^{2+}$  exists as a fairly stable anion  $[\text{Hg}(\text{SCN})_4]^{2-}$  with  $\log \beta_4 = 19.77$  (30) and, hence, it can easily accompany the  $\text{K}^+ \text{--DB18C6}$  ion into the liquid membrane (i.e., about 90% transport after 2 hours). In further experiments, such experimental variables as concentration of KSCN in the source phase, nature and concentration of the stripping agent in the receiving phase, pH of the aqueous phases, and nature and concentration of the macrocyclic polyether in the organic membrane phase were optimized in order to achieve the highest efficiency and selectivity of a  $1.0 \times 10^{-3}$  mol/L solution of mercury nitrate across the membrane system used.

The effect of the concentration of DB18C6 in the organic phase on the transport efficiency of mercury was studied, and the results are given in Table 1. The results show that the percentage transport of mercury ion increases with an increase in DB18C6 concentration in chloroform. Maximum transport occurs at a concentration of about  $8.0 \times 10^{-3}$  mol/L. A further excess of carrier has no considerable effect on the transport efficiency.

The influence of the concentration of KSCN in the source phase on mercury ion transport was investigated, and the results are given in Table 2. As seen, the percentage of  $\text{Hg}^{2+}$  transported into the receiving phase increases with the potassium thiocyanate concentration in the source phase until a reagent concentration of about 0.2 mol/L is reached, beyond which the transport efficiency remains more or less the same.

The nature and composition of the receiving phase was found to have a pronounced influence on the mercury ion transport. Use of EDTA at pH 10 as a stripping ligand in the receiving phase, with  $\log K_s = 21.8$  with  $\text{Hg}^{2+}$  ion (30), caused a rather large enhancement in the efficiency and selectivity of mercury transport, while the presence of other stripping agents, such as thiosulfate, iodide, and chloride, resulted in diminished transport efficiency as well as in-



TABLE 1  
Effect of DB18C6 Concentration in the Membrane Phase  
on Mercury Transport<sup>a</sup>

| Concentration of DB18C6 $\times 10^3$ (mol/L) | Percentage transported into receiving phase | Percentage remaining in source phase |
|-----------------------------------------------|---------------------------------------------|--------------------------------------|
| 5                                             | 57                                          | 36                                   |
| 7                                             | 64                                          | 12                                   |
| 8                                             | 74                                          | 9                                    |
| 8.5                                           | 73                                          | 4                                    |
| 9                                             | 73                                          | 4                                    |
| 10                                            | 72                                          | 4                                    |
| 12                                            | 72                                          | 4                                    |

<sup>a</sup> Conditions: Source phase, 5 mL of  $1.0 \times 10^{-3}$  mol/L  $\text{Hg}^{2+}$  and 0.1 mol/L KSCN; membrane phase, 35 mL of varying concentration of DB18C6 in  $\text{CHCl}_3$ ; receiving phase, 10 mL of 0.1 mol/L EDTA; time of transport, 3 hours.

creased interfering effects of other cations. The optimum concentration of EDTA in the receiving phase (at pH 8.5) was investigated (Table 3) and found to be 0.2 mol/L. It is interesting to note that the absence of a metal ion acceptor in the receiving phase resulted in no measurable mercury transport even for much longer periods of time.

The influence of the pH of the source and receiving phases on the transport of  $\text{Hg}^{2+}$  was investigated, and the results are shown in Fig. 1. It is seen that

TABLE 2  
Effect of KSCN Concentration in the Source Phase  
on Mercury Transport<sup>a</sup>

| Concentration of KSCN (mol/L) | Percentage transported into receiving phase | Percentage remaining in source phase |
|-------------------------------|---------------------------------------------|--------------------------------------|
| 0.05                          | 53                                          | 27                                   |
| 0.10                          | 74                                          | 90                                   |
| 0.15                          | 83                                          | 3                                    |
| 0.20                          | 90                                          | 3                                    |
| 0.25                          | 91                                          | 3                                    |
| 0.30                          | 90                                          | 3                                    |

<sup>a</sup> Conditions: Source phase, 5 mL of  $1.0 \times 10^{-3}$  mol/L  $\text{Hg}^{2+}$  and varying concentration of KSCN; membrane phase, 35 mL of  $8.0 \times 10^{-3}$  M DB18C6 in chloroform; receiving phase, 10 mL of 0.1 mol/L EDTA at pH 8.5; time of transport, 3 hours.



TABLE 3  
Effect of EDTA Concentration in the Receiving Phase  
on Mercury Transport<sup>a</sup>

| Concentration of EDTA (mol/L) | Percentage transported into receiving phase | Percentage remaining in source phase |
|-------------------------------|---------------------------------------------|--------------------------------------|
| 0.05                          | 73                                          | 3                                    |
| 0.08                          | 80                                          | 3                                    |
| 0.10                          | 90                                          | 2                                    |
| 0.15                          | 92                                          | 2                                    |
| 0.20                          | 93                                          | 2                                    |
| 0.30                          | 93                                          | 2                                    |

<sup>a</sup> Conditions: Source phase, 5 mL of  $1.0 \times 10^{-3}$  mol/L  $\text{Hg}^{2+}$  and 0.2 mol/L KSCN; membrane phase, 35 mL of  $8.0 \times 10^{-3}$  mol/L DB18C6; receiving phase, 10 mL of varying concentration of EDTA in water at pH 8.5; time of transport, 3 hours.

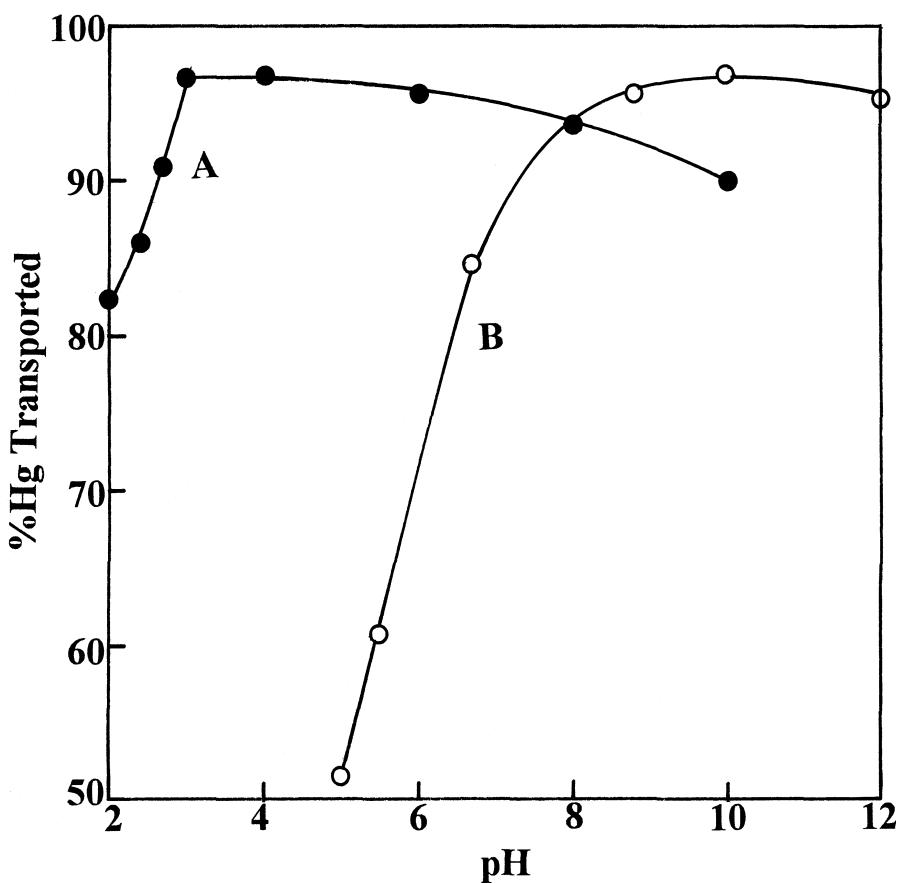



FIG. 1 Effect of pH of the source (A) and receiving (B) phases on mercury transport. Conditions similar to those mentioned in Table 5, except for the varying pH values of the source and receiving phases.



the release of mercury ions into the receiving phase occurs almost completely in the pH range of about 9–12. The decreased release of mercury at lower pH values can be mainly related to the diminished complexing power of EDTA. The best pH region of the source phase for the quantitative transport of  $\text{Hg}^{2+}$  ion is about 3–6. At pH values smaller than 3 in the source phase, most of the SCN<sup>−</sup> ion exists in the form of HCN, resulting in a diminished amount of  $\text{Hg}(\text{SCN})_4^{2-}$  ion necessary for the successful extraction of mercury ion into the organic phase. On the other hand, at pH values greater than 6 the formation of some  $\text{Hg}(\text{OH})_2$  precipitate caused a decreased transport efficiency of mercury ion.

Permeability of the membrane system designed for transport of  $\text{Hg}^{2+}$  was also found to be critically dependent on the nature of the macrocycle used as carrier in the organic membrane phase. In other experiments (and under similar experimental conditions) we tried several crown ethers as well as cryptand C222 as carrier for the transport of  $\text{Hg}(\text{SCN})_4^{2-}$  in the presence of  $\text{K}^+$  ion, and the results are shown in Table 4. As seen, the three 18-crowns and cryptand C222 are suitable carriers for the transport of mercury, mainly due to their proper cavity sizes for  $\text{K}^+$  ions (31) and, consequently, the higher stability of their complexes. However, in the case of macrocycles of smaller (B15C5) and larger (DB24C8) cavity sizes than the 18-crowns used, and diminished stability of their  $\text{K}^+$  complexes, the transport of mercury ion through the liquid membrane is very low. It should be noted that, despite some lower efficiency of DB18C6 in comparison with that of 18C6 and DC18C6, this ligand was selected as the ion carrier for the transport system, mainly due to its much lower price.

TABLE 4  
Effect of Carrier Structure on Mercury Transport<sup>a</sup>

| Carrier ligand | Log $K_f$ of $\text{K}^+$ complex in methanol <sup>b</sup> | Percentage transported into receiving phase | Percentage remaining in source phase |
|----------------|------------------------------------------------------------|---------------------------------------------|--------------------------------------|
| B15C5          | 3.9 ( $\text{K}_1$ )                                       | 15                                          | 58                                   |
| 18C6           | 6.1                                                        | 98                                          | 0                                    |
| DB18C6         | 5.0                                                        | 96                                          | 2                                    |
| DC18C6         | 3.4                                                        | 98                                          | 0                                    |
| DB24C8         | 3.5                                                        | 14                                          | 79                                   |
| C222           | 10.4                                                       | 96                                          | 0                                    |

<sup>a</sup> Conditions: Source phase, 5 mL of  $1.0 \times 10^{-3}$  mol/L  $\text{Hg}^{2+}$  and 0.2 mol/L KSCN; membrane phase, 35 mL of  $8.0 \times 10^{-3}$  mol/L macrocycle; receiving phase, 10 mL of 0.2 mol/L EDTA at pH 10; time of transport, 2.5 hours.

<sup>b</sup> Ref. 31.



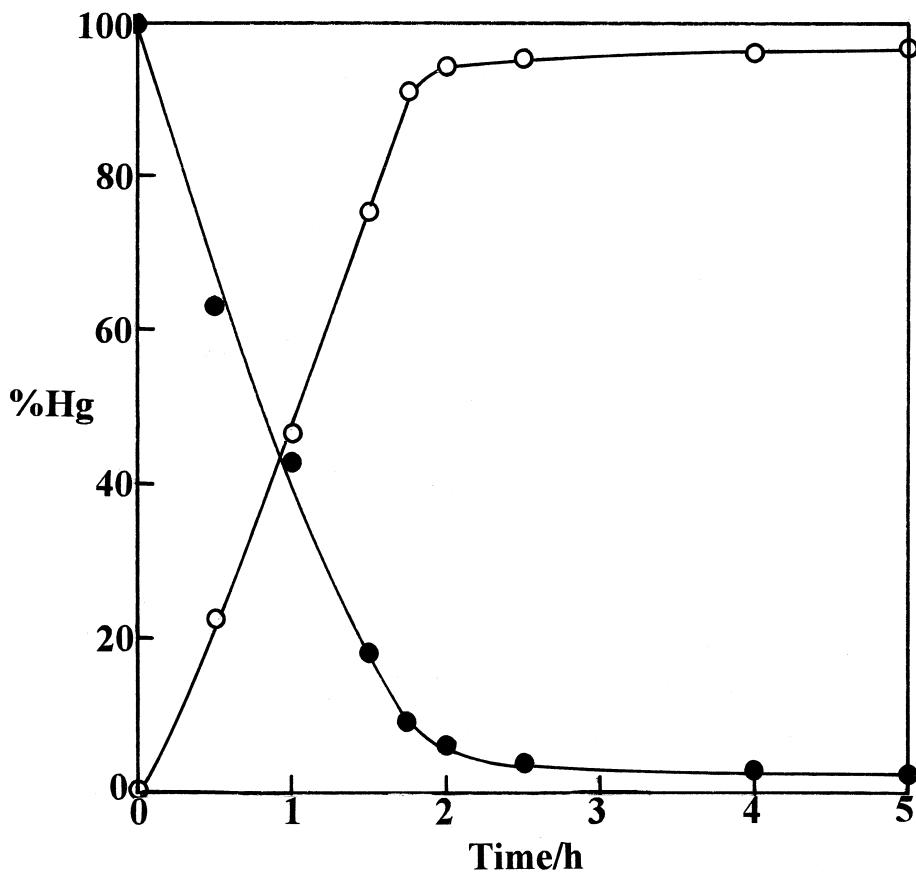
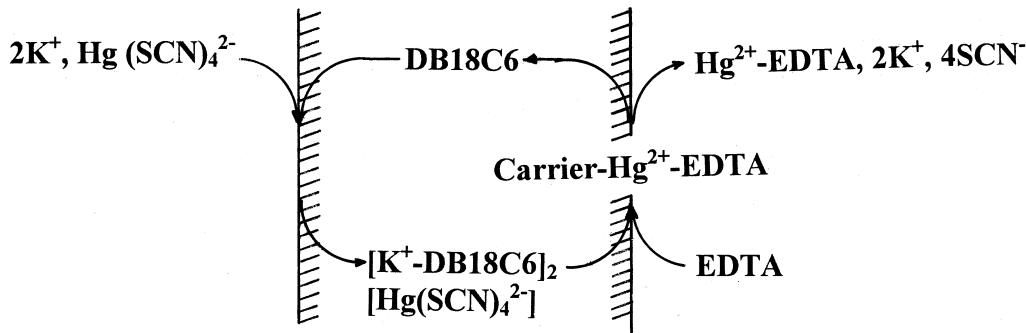



FIG. 2 Time dependence of mercury transport: (○) transported, (●) remaining. Conditions similar to those mentioned in Table 5.

Figure 2 shows the time dependence of mercury transport through the liquid membrane under the optimal experimental conditions. It is seen that both the extraction of  $\text{Hg}(\text{SCN})_4^{2-}$  from the source phase into the membrane and the release of mercury from the membrane into the receiving phase are fast (and follow the same trend), so that some 95% mercury transport occurs after 2 hours. The reproducibility of mercury transport was investigated, and the percent of metal ion transported after 2 hours from seven replicate measurements was found to be  $94.2 \pm 0.7$ .

The selectivity of the membrane system for the transport of mercury ion over some other transition and heavy metal ions, in equimolar mixtures was studied and the results are summarized in Table 5. As seen, among the different cations tried, copper, lead, and especially zinc interfere seriously in transport of mercury ion. However, the interfering effect of these cations was eliminated by adding 0.05 mol/L EDTA at pH 3.2 as a suitable masking agent in the source phase (Table 5).




TABLE 5  
Amount of Cation Transported from a Cation Mixture in the  
Absence (A) and Presence (B) of 0.05 mol/L EDTA  
at pH 3.2 as Masking Agent in the Source Phase<sup>a</sup>

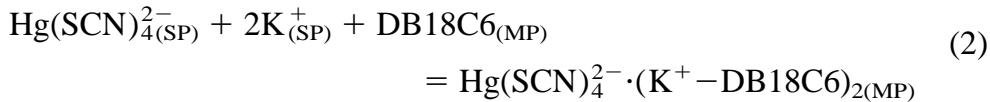
| Cation           | Percentage transported into receiving phase | Percentage remaining in source phase |
|------------------|---------------------------------------------|--------------------------------------|
| <i>Mixture A</i> |                                             |                                      |
| Hg <sup>2+</sup> | 95                                          | 2                                    |
| Zn <sup>2+</sup> | 90                                          | 1                                    |
| Pb <sup>2+</sup> | 33                                          | 65                                   |
| Cu <sup>2+</sup> | 17                                          | 80                                   |
| Ni <sup>2+</sup> | 0                                           | 98                                   |
| Cd <sup>2+</sup> | 0                                           | 98                                   |
| Co <sup>2+</sup> | 0                                           | 99                                   |
| <i>Mixture B</i> |                                             |                                      |
| Hg <sup>2+</sup> | 93                                          | 5                                    |
| Zn <sup>2+</sup> | 3                                           | 95                                   |
| Pb <sup>2+</sup> | 0                                           | 100                                  |
| Cu <sup>2+</sup> | 0                                           | 100                                  |
| Ni <sup>2+</sup> | 0                                           | 100                                  |
| Cd <sup>2+</sup> | 0                                           | 100                                  |
| Co <sup>2+</sup> | 0                                           | 100                                  |

<sup>a</sup> Conditions: Source phase, 5 mL of  $1.0 \times 10^{-3}$  mol/L of each cation and 0.2 mol/L KSCN; membrane phase, 35 mL of  $8.0 \times 10^{-3}$  mol/L DB18C6; receiving phase, 10 mL of 0.2 mol/L EDTA at pH 10; time of transport, 2.5 hours.

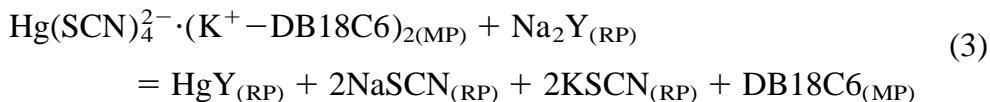
In order to further support the concept that tetracyanatomercury(II) complexed anion accompanied the K<sup>+</sup>-DB18C6 complexed cation into the membrane phase in this study, the concentration of K<sup>+</sup> after the transport period in the receiving phase was determined. It was found that approximately twice as many K<sup>+</sup> ions as Hg<sup>2+</sup> ions were transported, emphasizing that almost all potassium ions are participating as the (K<sup>+</sup>-DB18C6)<sub>2</sub>·Hg(SCN)<sub>4</sub><sup>2-</sup> ion pair. A proposed mechanism of mercury transport through the liquid membrane is presented in Scheme 1. At the source phase-membrane interface, the K<sup>+</sup>-DB18C6 complex is formed. Since the Hg(SCN)<sub>4</sub><sup>2-</sup> complex anion is less hydrated than other anions present in the source phase, it will form an ion pair with the potassium-crown complex cation, and this ion pair distributes preferentially into the chloroform phase, then diffuses across the membrane. At the membrane-receiving phase interface, EDTA with high affinity for mercury ion (30) com-






SCHEME 1

pletes the transport process by removing  $\text{Hg}^{2+}$  ion from its complex anion. Finally, the free carrier (i.e., DB18C6) diffuses back across the membrane to the source phase-membrane interface, where the cycle starts again. Actually, the transport process of mercury through the liquid membrane is illustrated by the following equations:


1. The  $\text{Hg}^{2+}$  ion in the source phase reacts with  $\text{SCN}^-$  to form a very stable  $\text{Hg}(\text{SCN})_4^{2-}$  complex anion:



2. The macrocycle DB18C6 in the membrane phase reacts with  $\text{K}^+$  ion to form a  $\text{K}^+ - \text{DB18C6}$  complex acting as a suitable lipophilic counterion for the formation of a  $\text{Hg}(\text{SCN})_4^{2-} \cdot (\text{K}^+ - \text{DB18C6})_2$  ion pair which is readily extractable in the membrane phase:



3. EDTA ( $\text{Na}_2\text{Y}$ ) in the receiving phase reacts with the ion pair to strip mercury into the receiving phase:



## CONCLUSION

The very high efficiency and excellent degree of selectivity for mercury transport shown by the membrane system introduced demonstrate its potential application to selective removal, concentration, or purification of  $\text{Hg}^{2+}$  ion from different real samples.



## REFERENCES

1. C. D. Klassen, M. D. Amdur, and J. Dull, *Casarett and Dull's Toxicology*, 3rd ed., Macmillan, New York, NY, 1986, p. 605.
2. B. G. Katzung, *Basic and Clinical Pharmacology*, 3rd ed., Appleton and Lange, Norwalk, CT, 1987, pp. 734-735.
3. L. Cecille, M. Casaraci, and L. Pietrelli (Eds.), *New Separation Chemistry Techniques for Radioactive Waste and Other Specific Applications*, Elsevier, Amsterdam, 1991.
4. W. F. Morf, D. Ammann, R. Bissig, E. Pretsch, and W. Wilson, in *Progress in Macrocyclic Chemistry*, Vol. 1 (R. M. Izatt and J. J. Christensen, Eds.), Wiley-Interscience, New York, NY, 1979.
5. D. W. McBride, R. M. Izatt, J. D. Lamb, and J. J. Christensen, in *Inclusion Compounds*, Vol. 3 (J. L. Atwood, J. E. D. Davies, and D. D. MacNicol, Eds.), Academic Press, Orlando, FL, 1984.
6. R. M. Izatt, G. A. Clark, J. S. Bradshaw, J. D. Lamb, and J. J. Christensen, *Sep. Purif. Methods*, 15, 21 (1986).
7. L. F. Lindoy and D. S. Baldwin, *Pure Appl. Chem.*, 61, 909 (1989).
8. T. Araki and H. Tsukube, *Liquid Membranes: Chemical Applications*, CRC Press, Boca Raton, FL, 1990.
9. R. M. Izatt, R. L. Bruening, W. Geng, M. H. Cho, and J. J. Christensen, *Anal. Chem.*, 59, 2405 (1987).
10. M. Tromp, M. Burgard, M. J. F. Leroy, and M. Prevost, *J. Membr. Sci.*, 38, 295 (1988).
11. R. M. Izatt, R. L. Bruening, G. C. Lindh, and J. J. Christensen, *Anal. Chem.*, 61, 1140 (1989).
12. M. Tromp, M. Burgard, and A. El Bachiri, *Analusis*, 19, 97 (1991).
13. Q. Li, K. Li, and S. Tong, *Fenxi Huaxue*, 15, 202 (1993).
14. C. Zou, G. Li, K. Li, and S. Tong, *Ibid.*, 22, 1151 (1994).
15. H. Parham and M. Shamsipur, *J. Membr. Sci.*, 86, 29 (1994).
16. H. Parham and M. Shamsipur, *Ibid.*, 95, 21 (1994).
17. M. Akhond and M. Shamsipur, *Ibid.*, 117, 221 (1996).
18. A. El Bachiri, A. Hagege, and M. Burgard, *Ibid.*, 121, 159 (1996).
19. T. Nabeshima, N. Tsukada, K. Nishijima, H. Ohshiro, and Y. Yano, *J. Org. Chem.*, 61, 4342 (1996).
20. M. Akhond and M. Shamsipur, *Sep. Sci. Technol.*, 32, 1223 (1997).
21. K. Hiratani, T. Takahashi, H. Sugihara, K. Kasuga, K. Fujiwara, T. Hayasita, and R. A. Bartsch, *Anal. Chem.*, 69, 3002 (1997).
22. C. S. Mendoza, T. Sigenobu, K. Sodeyama, and S. Kamata, *Anal. Sci.*, 13, 149 (1997).
23. M. Kompani and M. Shamsipur, *Iran. J. Chem. Chem. Eng.*, 14, 59 (1995).
24. M. Kompani and M. Shamsipur, *J. Sci. Islam. Repub. Iran*, 7, 13 (1996).
25. Y. Yamini, N. Alizadeh, and M. Shamsipur, *Anal. Chim. Acta*, In Press.
26. N. Tavakkoli and M. Shamsipur, *Anal. Lett.*, 29, 2269 (1996).
27. A. R. Fakhari, M. R. Ganjali, and M. Shamsipur, *Anal. Chem.*, 69, 3693 (1997).
28. R. M. Izatt, G. C. Lindh, R. L. Bruening, J. S. Bradshaw, J. D. Lamb, and J. J. Christensen, *Pure Appl. Chem.*, 58, 1453 (1986).
29. Y. Marcus, *Ion Solvation*, Wiley, Chichester, 1985.
30. Ju. Lurie, *Handbook of Analytical Chemistry*, Mir Publishers, Moscow, 1978.
31. R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen, and D. Sen, *Chem. Rev.*, 85, 271 (1985).

Received by editor February 1998



## **Request Permission or Order Reprints Instantly!**

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

**Order now!**

Reprints of this article can also be ordered at  
<http://www.dekker.com/servlet/product/DOI/101081SS100100782>